COMPETITIVE ATOM TRANSFER AND REARRANGEMENT REACTIONS OF 2,2,2-TRIPHENYLETHYL RADICAL

> Marvin L. Poutsma and Pedro A. Ibarbia Union Carbide Research Institute Union Carbide Corporation Tarrytown, N. Y. 10591

(Received in USA 15 June 1972; received in UK for publication 30 June 1972)

Most early attempts to generate 2,2,2-triphenylethyl radical (1) led either to products largely derived from its rearrangement to 1,1,2-triphenylethyl radical $(2)^1$ or to failure to form it.² However, Kaplan³ observed both rearranged (3) and unrearranged (4) triphenylethanes during reduction of 2,2,2-triphenylethyl chloride (5) with triphenyltin hydride (6a). Rearrangement was promoted by decreasing $[6a]^4$ and increasing temperature. Hydrocarbons 3 and $\frac{1}{4}$ were formed in comparable amounts at 100° with $[6a] \sim 1$ M, from which observation Carlsson

and Ingold⁵ estimated $k_1 \sim 5 \times 10^7 \text{ sec}^{-1}$ based on their measurements of absolute rate constants of reactions of representative radicals with <u>6a</u>. We report herein a more detailed study of this and certain other systems in which atom transfer and rearrangement of radical 1 compete.

Solutions of chloride 5, 6 tri-<u>n</u>-butyltin hydride $(\underline{6b})$, 7 an appropriate radical initiator, and diphenylmethane in benzene were degassed, sealed into tubes, and heated at constant temperature. Quantitative mmr analysis gave values of $[5]_{0}$, $[5]_{f}$, $[\underline{6b}]_{0}$, $[\underline{6b}]_{f}$, $[\underline{3}]_{f}$, and $[4]_{f}^{\ 8}$ compared to the diphenylmethane standard. 9 Because of the small absolute value of $[\frac{h}{2}]_{f}$, it was felt more accurate to determine the ratio $[\mathfrak{Z}]_{f}/[\frac{h}{2}]_{f}$ by glpc analysis. For the reaction scheme above: $d(\frac{h}{2})/d(\mathfrak{Z}) = k_{2}[\frac{h}{2}b]/k_{1}$ if the highly exothermic phenyl migration process is effectively irreversible. Since the material balances were satisfactory, we could write: $[\underline{6b}] = [\underline{6b}]_{0} - [\mathfrak{Z}] - [\frac{h}{2}]_{1}$, and integrate to give: exp $(k_{2}/k_{1})[\mathfrak{Z}]_{f} = \{(k_{2}/k_{1})[\underline{6b}]_{0} + 1\}/\{(k_{2}/k_{1})[\underline{6b}]_{f} + 1\}$. Since this formulation in terms of $[\mathfrak{Z}]_{f}$ rather than $[\mathfrak{Z}]_{f}/[\frac{h}{2}]_{f}$ as a function of $[\underline{6b}]_{0}$ and $[\underline{6b}]_{f}$ overemphasizes any discrepancies in material balance, the value of $[\mathfrak{Z}]_{f}$ used to solve for $k_{2}^{\underline{6b}}/k_{1}$ was chosen as: $[\mathfrak{Z}]_{f} = \{[\underline{6b}]_{0} - [\underline{6b}]_{f}\}\{[\mathfrak{Z}]_{f}/[\frac{h}{2}]_{f}\}\{[\mathfrak{Z}]_{f}/[\frac{h}{2}]_{f} + 1\}^{-1}$. Data at varying temperatures and $[\mathfrak{Z}]_{0}/[\underline{6b}]_{0}$ ratios are listed in the Table. An Arrhenius plot covering 90° gives $(\mathbb{F}_{2}^{\underline{6b}} - \mathbb{E}_{1}) = -5.1 \pm 0.3$ kcal/mole and $\log A_{2}^{\underline{6b}}/A_{1} = -3.3$ $(\Delta S_{2}^{\pm} - \Delta S_{1}^{\pm} = -15 \ {e}, \mu$.) where the superscript indicates atom transfer step 2 for $\underline{6b}$. A single run at 75° with 2,2,2-triphenylethyl bromide 10^{10} fell on the same correlation line.

Similar runs with stammane \oint_{a} are also shown in the Table. Since $[\oint_{a}]_{f}$ could not be determined by the above method, $k_{2} \stackrel{6a}{\sim} / k_{1}$ was calculated with the assumption: $[\oint_{a}]_{f} = [\oint_{a}]_{0} - [\Im_{1}]_{f} - [\overset{4}{\sqcup}]_{f}$. The Arrhenius values are $(E_{2} \stackrel{6a}{\sim} - E_{1}) = -5.8 \pm 0.2$ kcal/mole and log $A_{2} \stackrel{6a}{\sim} / A_{1} = -3.3$. Hence the recognized¹¹ greater hydrogen transfer ability of stammane \oint_{a} compared to \oint_{b} is quantified for radical 1 as $(E_{2} \stackrel{6b}{\sim} - E_{2} \stackrel{6a}{\sim}) \simeq 0.7$ kcal/mole with log $A_{2} \stackrel{6a}{\sim} / A_{2} \stackrel{6a}{\sim} = 0$.

Reaction of chloride 5 with triphenylgermane $(\chi)^{12}$ was sluggish at 75° but could be carried out with initiation by <u>t</u>-butyl peroxide at 135° to give a mixture of 3 and $\frac{1}{2}$ in quantitative yield based on 5; however, approx. 2 moles of χ disappeared for each mole of 5. The value of k_2^{χ}/k_1 using observed values of $(\chi)_0$ and $(\chi)_f$ was 0.06 ± 0.01 for two runs. Thus at 135°, germane χ is a poorer hydrogen donor towards radical 1 than the analogous stannane ξ_2 by a factor of 10-fold.¹³ All attempts to reduce chloride 5 with triphenylsilane¹⁴ failed.

Competitive reduction of chloride 5 and neopentyl chloride with a limited supply of stannane 6b at 75° showed 5 to be 7.8 times more reactive towards the tri-<u>n</u>-butylstannyl radical. Hence a significant enhancement in reactivity of 5 compared to typical primary chlorides¹⁵ does exist, although suggestions of anchimeric assistance to chlorine abstraction seem inappropriate in view of the conformity of the results in the Table to the stepwise rearrangement scheme used herein.

	Reduction of Chloride 5 with Stannanes $6a$ and $6b$ [3],								
Temp	Time	[2] <mark>ª</mark>	[ố] <mark>°</mark>	$[\text{Init.}]_{o}^{c}$	[5][5] ^a	[ố] °- [č] _t	$[3]_{f} + [4]_{f}^{a}$	$\frac{\left[\frac{1}{2}\right]_{f}}{\left[\frac{1}{2}\right]_{f}}$	<u>k2/k1</u>
45°	21 hr	0.51	1.01	A, 0. 028	0.395	0.38	0.395	0.72 ^f	1.70
	68	0.485	0.69	A, 0. 023	0.485	0.485	0.435	1.49 ^e	1.57
	68	1.015	0.46	A,0.026	0.465	0.46	0.44	3.76 ^e	1.31
75°	5	0.51	2.20	A,0.009	0.51	0.54	0.435	0.64 ^e	0.82
	5	0.52	1.08	A, 0. 010	0.52	0.56	0.555	1.70 ^e	0.76
	5.3	0.53	1.05	A, 0. 028	0.53	0.51	0.52	1.73 ^e	0.76
	5.7	0.74	0.73	A, 0.015	0.66	0.73	0.635	4.06 ^e	0.73
	5.3	0.90	0.44	A,0.023	0.43	0.44	0.425	6.76 ^e	0.75
	5.3	0,96	0.46	A,0.009	0.45	0.46	0.425	5.73 ^e	0,82
135°	4	0.505	1.33	в, 0.006	0.505	0.64	0.48	3.57 ^e	0.28
	5.2	0.485	1.08	C	0.40	0.48	0.42	3.75 [°]	0.31
	4	0,975	0.51	B,0.010	0.49	0.51	0.52	19. ^e	0.20
45°	17	0.47	1.44	A,0.021	0.36	0.39	0.39	0.175 [°]	4.63
	21	0.48	1.05	A,0.023	0. 38	0.38	0.38	0.23 ^f	5.13
75°	1.5	0.46	1.58	A,0.008	0.36	0.34	0.34	0.36 ^r	1,98
	5	0.50	1.06	A,0.011	0.50	0,55	0.55	0.72 ^f	1.82
	2	1.05	0.52	A, 0. 007	0.42	0.47	0.47	2.03 ^f	1.86
135°	0.25	0.48	1.47	С	0.23	0.22	0.22	1.09 ^f	0.67
	0.33	0.51	1.47	в, 0.009	0.51	0.40	0.40	1.27 ^f	0,62
	1	0.48	1.02	С	0.39	0.35	0.35	2.07 ^f	0.58
	0.25	0.475	1.01	С	0.195	0.20	0.20	1.68 ^f	0.65
	0.25	0.47	0.87	С	0.18	0.17	0.17	2.13 ^f	0.60

Table

^aMolar concentration in benzene determined by nmr compared to a weighed internal standard of diphenylmethane $(0.25-0.4\underline{M})$.^b First twelve entries: 6 = 6b, concentration by nmr; last ten entries, 6 = 6a, concentration by initial weight. ^c A \cong azobisisobutyronitrile, B = t-butyl peroxide, $\widetilde{C} =$ none; molar concentration. ^d For $\underline{6b}$, by nmr; for $\underline{6a}$, equated to $[\frac{3}{2}]_{f} + [\frac{4}{2}]_{f}$. ^e By glpc analysis. ^f By mmr analysis.

Previous studies^{1a, b} of the decarbonylation of 3,3,3-triphenylpropionaldehyde (§) reported rearranged 3 and triphenylethylene to be the major hydrocarbon products but a small amount of unrearranged $\frac{1}{2}$ could not be ruled out. From a decarbonylation of neat 8 with 18 mole % <u>t</u>-butyl peroxide which proceeded to approx. 35% completion in 6 hr at 135-140°, we could set an upper limit of < 2% $\frac{1}{2}$ in the hydrocarbon fraction. Thus $k_2 \frac{8}{2}/k_1 < 0.005$ at 135-140°.

In contrast, based on the known greater atom transfer ability of several halogenating

agents such as <u>t</u>-butyl hypochlorite $(2)^{16}$ compared to stannanes, we anticipated that chlorination of hydrocarbon <u>k</u> should produce largely unrearranged chloride <u>5</u> rather than 1,1,2triphenylethyl chloride (<u>10</u>). Indeed this expectation is qualitatively correct to the extent that photo-initiated reaction of <u>k</u> with <u>9</u> (or with molecular chlorine) at 25-40° sluggishly gave <u>5</u> in <u>low</u> yield with no <u>10</u> detectable. However, because of the inefficiency of the reactions and the thermal instability of <u>10</u>, no quantitative evaluation of k_2^{2/k_1} could be made. The major course of the reaction with chlorine was chlorine addition to a phenyl ring of <u>k</u>.

REFERENCES

- (a) D. Y. Curtin and M. J. Hurwitz, J. Amer. Chem. Soc., 74, 5381 (1952); (b) D. Y. Curtin and J. C. Kauer, J. Org. Chem., 25, 880 (1960); (c) D. Y. Curtin and T. C. Miller, ibid., 25, 885 (1960); (d) D. B. Denney, R. L. Ellsworth, and D. Z. Denney, J. Amer. Chem. Soc., 86, 1116 (1964); (e) W. Rickatson and T. S. Stevens, J. Chem. Soc., 3960 (1963) [The 1stter two references report small amounts of products retaining the structure of radical 1, presumably from cage recombination processes].
- J. W. Wilt and D. D. Oathoudt, J. Org. Chem., 23, 218 (1958); H. Breederveld and E. C. Kooyman, <u>Rec. Trav. Chim.</u>, 76, 297 (1957).
- 3. L. Kaplan, J. Amer. Chem. Soc., 88, 4531 (1966).
- 4. The brackets signify molar concentrations.
- 5. D. J. Carlsson and K. U. Ingold, J. Amer. Chem. Soc., 90, 7047 (1968).
- 6. H. E. Zimmerman and F. J. Smentowski, ibid., 79, 5455 (1957).
- 7. H. G. Kuivila and O. F. Beumel, Jr., *ibid.*, <u>83</u>, 1248 (1961).
- 8. M. Gomberg and L. H. Cone, Ber., 39, 1461 (1906).
- Compounds 5, <u>6b</u>, 3, and 4 were determined at 8 4.30, 5.0, 3.20, and 2.03 ppm, respectively; subscripts o and f refer to initial and final concentrations.
- 10. Prepared from triphenylmethyl lithium and methylene bromide as in ref. 6.
- 11. H. G. Kuivila, <u>Accts. Chem. Res.</u>, <u>1</u>, 299 (1968); for example, Carlsson and Ingold (ref. 5) report the rate constants for reaction of <u>t</u>-butyl radical with <u>68</u> and <u>60</u> at 25° to be 3.1 x 10⁶ and 7.4 x 10⁵ M⁻¹ sec⁻¹, respectively.
- 12. L. Kaplan, Chem. Comm., 106 (1969).
- D. J. Carlsson, K. U. Ingold, and L. C. Bray, <u>Int. J. Chem. Kinetics</u>, <u>1</u>, 315 (1969) report a factor of 18 between the rates of reaction of methyl radical with <u>6b</u> and with tri-<u>n</u>-butylgermane at 25°.
- 14. Y. Nagei, K. Yamazaki, and I. Shiojima, Bull. Chem. Soc. Japan, 40, 2210 (1967).
- 15. Competitive reduction of neopentyl and n-propyl chlorides revealed comparable reactivity.
- L. J. Altman and R. C. Baldwin, <u>Tetrahedron Lett</u>., 981 (1972); F. D. Greene and N. N. Lowry, <u>J. Org. Chem.</u>, <u>32</u>, 875, 882 (1967).